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Chaos-nonchaos phase transitions induced by external noise in ensembles
of nonlinearly coupled oscillators
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Nonlinear dynamical behaviors of ensembles of nonlinearly coupled oscillators subjected to external noise
are studied on the basis of nonlinear Fokker-Planck equations. The effects of two kinds of noise, the Langevin
noise and the noise introduced in the coupling strength, are investigated, and phase transitions involving
chaos-nonchaos bifurcations are found to occur as the noise level is changddh@&orem is proposed for the
nonlinear Fokker-Planck equation to ensure stability of the Gaussian type solution that is approached for large
times.
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I. INTRODUCTION furcations of solution§5,13—-18. The NFPE with a symmet-
ric bistable potential and a diffusive coupling taken into ac-
The behaviors of nonlinear dynamical systems subjectegount indeed exhibits a pitchfork bifurcation representing a
to external noise has attracted much attention from researcferromagnetic-paramagnetic type phase transition, while an
ers in many areas of scienf 2]. While the effects of noise H theorem has been shown to still hold to ensure global
are usually considered to obscure the fine structure of intrinstability of the systenji17]. In this case the coupled system
sic physical properties of a system, or to deteriorate the desatisfies the so-called detailed balance condition leading to
gree of coherence or order, the phenomena of stochastif® existence of an energy function.

resonancé2,3] are known to reveal a favorable aspect of theb lThe problgm of Etudying the case WiLhOUt tlreh detailed
action of noise in improving the performance of the system, aa;]nce cotn ftion tthen qr|se|s, t? .seehw atdw'll'h ap;?erl tof
as is shown by the fact that noise can enhance the respongﬂ? a system as fthe noise level IS changed. The €etiects o

: . L noise on synchronization phenomena in coupled limit cycle
of a bistable system to a weak time-periodic signal under__ I i i I K
certain conditions. The degree of stochastic resonance m gscillators[13,14) as Wetl as 1h oscl ator neura net_wor S

' . . . . Xl,lj have been studied, using the NFPE, to confirm that

be made pronounced by introducing appropriate coupling

i | K led rder-disorder type phase transitions can occur. It will be of
among nonlinear elements to make a coupled systes particular interest to observe behaviors of a system of

(see alsd6]), whose behaviors have also been of great inqhied chaotic oscillators, since the appearance or disap-
terest in recent years from the viewpoint of developing a&,earance of chaos with changes of noise level may be viewed
neural network theory7—-12]. as a way of controlling chaos with noi$&9,20. Recently,
Unlike the case of a system of a single or a small numbethe effects of noise on a coupled map lattice with mean-field
of elements) or oscillatofs), a coupled system composed of couplings have been studied by Shibata, Chawanya, and
a great number of elements becomes robust to a certain ekaneko [21] using computer simulations on the nonlinear
tent against the influence of noise with respect to the presePerron-Frobenius equati¢@2]. They have shown that noise
vation of the intrinsic natures of the constituefis3,14: reduces the degree of complexity in terms of the Lyapunov
whereas a damped oscillator with a symmetric bistable podimension of the system. The result that too much noise
tential that is subjected to external white noise exhibits eradded to the system leads to the creation of a fixed point in
godicity without showing any bifurcations, a system Mf the space of order parameters is consistent with the appear-
coupled damped oscillators with mean-field couplings carance of the disordered phase observed in the order-disorder
undergo a ferromagnetic-paramagnetic type phase transitidtgpe phase transition of coupled limit cycle oscillator sys-
in the thermodynamic limiN—o, as the noise level is var- tems[12]. Dealing with the case of a coupled chaotic system
ied [15-17, giving rise to the occurrence of spontaneousof time-continuous oscillators will, however, require con-
symmetry breaking. ducting extensive numerical work based on time-consuming
The occurrence of such a phase transition was studied occomputer simulations.
the basis of the analysis of a nonlinear Fokker-Planck equa- The aim of this paper is to study the effect of noise on
tion (NFPB [15-19 that describes the empirical probability globally coupled systems exhibiting time-continuous chaotic
distribution for a system of globally coupled Langevin equa-oscillations as rigorously as possible on the basis of analyti-
tions under the thermodynamic limit. The NFPE emerges asally solvable models. To this end we consider nonlinearly
a direct consequence of applying the law of large numbers icoupled oscillator systems taking the form of analog neural
accordance with the scheme of mean-field coupling. Unlikenetwork equations that exhibit chaotic or limit cycle oscilla-
the linear Fokker-Planck equation, the NFPE, which is a kindions in the absence of external noig&8]. We introduce
of nonlinear master equation, is no longer expected to exhibiboise into such systems in two ways: by applying the Lange-
ergodicity and hence may give rise to the occurrence of bivin noise as an external force in the standard way, and by
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adding colored noise in the coupling strength. Studies of th@oise, an appropriate parameter setting &Qr in Eq. (1)
effects of noise introduced in the coupling strength from theyields limit cycle or chaotic oscillations even for the case
viewpoint of phase transitions have been quite few. We inwith finite N [23], for which the introduction of any small
vestigate stochastic behaviors of the system by employingmount of external noised( >0, k=1,2,3) would, however,
the method of the nonlinear Fokker-Planck equation. Théring ergodicity into the stochastic system to prevent oscil-
NFPE corresponding to such systems yields a solution regdatory motions of averaged physical quantities. We are con-
resenting oscillatory motions of the probability distribution cerned with investigating the behaviors of the system driven
whose dynamical behavior may depend on the magnitude dfy external noise in the thermodynamic lif\t—c. To this

the diffusion constants. We will show that &itheorem also  end it will be appropriate to transform the above set of equa-
holds for the NFPE of the present system to ensure stabilityion into the nonlinear Fokker-Planck equation describing the
of the Gaussian distribution that is given as its special solutime evolution of the empirical probability distribution:

tion.

ap(t,x,y,z,¢e) J box-+e4(Vo))p]
E—— WS — X
Il. MODEL AND NONLINEAR FOKKER-PLANCK at IX [(=byx+ex{Vi))p
EQUATION APPROACH J
We begin by defining a system dfelements coupled via - W[(_ bay +&2(V2))p]
nonlinear global interactions and subjected to external noise,
whose dynamics is described by a set of Langevin equations: d
g Y Jevined — —[(=bsz+(e3+)(Va))p]
N
| o LT rep]+ | Daga t 25y2
+1(1), , ,
| LI | | | *DWwW)p
Y=~y + > 39V, (a,x D+ a1+ ayzl)
=1 =Le[p(t)]p (4)
+E(1), @D with
N
7= —pazV+ > IV 5 (agx D+ agyh) +agezl)) (V)= f V(aX+ agoy +agsz)p(t,x,y,z,e)dx dy dz .
i=1
)

+f9(t), i=1,...N, W . .
e then straightforwardly obtain the order parameter equa-

with <f(ki)(t)f|(j)(t')>=ZDk5(t—t')5ij5k| (D,>0) and tion of the meangx), etc.:

b,,b,,b3>0, wherea,, andb, are constants and, denote d

appropriate nonlinear functions specifying the nonlinear cou- a(x>= —by(x)+e{Vq), (6a)

plings. We assume/, to be bounded functions such as

tanhp(:), sin(-), and so on. The mean-field coupling d

strengths;; may be assumed to be given by a()/): —by(y) +ex(Va), (6b)

J<k”>=$(8k+s<k”), k=1,...,3, 2) d
a<z>=_b3<z>+(83+<8>)<V3>1 (60

whereg are constants, and(') represents appropriately de-
fined colored noise in the coupling strength. For simplicity _
we takee{)=£{=0, and assume{’ to obey the Ornstein- gile) =~ ve). (6d)
Uhlenbeck process:
Note that the NFPE has the characteristic feature that one
d i) L £() can formally separate it into the motions of the means
gree — ~ves Hi(U, (x), {y), (2), and(e) and the second moments of the prob-
3) ability distribution around the mean, although the former is
Dt (t"))=2D,8(t—t') (y>0, D,=0). in reality affected by the latter via the ter(iv)) that arises
from the couplings. Indeed, putting=x—{x), v=y—(y),
Choosing such a sigmoidal function as tg#fh) with ana- w=z—(z), n=¢— (&), one obtains the moment equations
log gainB for V(-), we can view Eq(1) as a network model q
equation of analog neurons, which have been extensivel o 2
stqudied in the casg without noi§8—10]. In the absence of g a“’” )=~ 2b3(W) + 2{wn)(V3) +2Ds, (79
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d
gi{wn)= = (gt y)wn)+{(7°){(Va), (7b)
together with

d 2 2 d . 2
&(U )=—2by(u)+2Dy, a@ )= —2by(v?)+2D,,

d d
gilum=—(bsty){un), (vn)=-(bty)}vn),

d

a(uv>:—(b1+b2)<uv>,
q 8
a(vw>= —(by+b3){(vw) + (v 7)(Vs),

%(Ww: —(by+bag){wu) +(un)(Vs),

d 2 2
Gi{7)=—2%(n")+ 2Dy,

where(-) represents the average with respect to the corre-

sponding probability distributior(t,u,v,w, 7). Equation

(8) takes a closed form without the need to know higher
moments, sincé(t,u,v,w,n) turns out to obey a linear

Fokker-Planck equation, given th@f,) is known as a func-
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(v)=0, (uv)=0,

We see that Eqgs(6a—(6c) and (7) with (¢)=0 and
(n?)=D, Iy exhaustively describe the dynamical behaviors
of the coupled system for large times, for which

(vw)=0, (wuy=D0.

D, D,
2_ . 2 2 2,2
o= tae b—2+ak3 (we).

b, (12)

The Gaussian distributiopg(t,u,v,w, ) assumed in the
above argument turns out to be approached with time elapsed
from any initial condition forp(t,x,y,z,&). This can be
more directly confirmed by the followingl theorem for the
NFPE.

H theorem Let p(t,X,y,z,&) be any solution to the NFPE
(4). Suppose that the Gaussian distributipg(t,x,y,z,¢)
=Pe(t,x—(x),y—(y),z—(2),e —(¢)) in Eq. (9) is defined
such that the mean), etc., and covariancdsi?), etc., are
given as an arbitrary solution to the moment equati@@)s
(7), and(8) with the averag€V,) taken with respect to the
p(t,x,y,z,&) [Eq. (5)]. Then the following inequalities hold:

H(p,pG)Ef pln(i)dxdydz @&=0, (13
R* Pc

d
GtH(P.Pe)=0. (14)

Proof. The first inequality follows from the entropy in-
equalityx—1=Inx with x=pg/p. To prove the second in-

tion of t. It then follows that a special solution to the linear equality, note thap(t,x,y,z,e) and pg(t,X,y,z,¢) satisfy
Fokker-Planck equation can be given by a Gaussian distribyne time evolution ’e,qL’Ja’tion with the same Fokker-

tion of the form

—3(C(H)'s,9)},
9

where §=(u,v,w, ) and the matrixC(t) has the compo-
nentsC(t);j=(s;s;j) (i,j=1,...,4)that are the solution to
the moment equation§) and(8) with s; denoting the com-
ponent ofs.

Whenp(t,u,v,w, 7)=Pg(t,u,v,w, ) holds, by defining
my= a, X+ a,y +a,3z, one can rewritdV,) in Eq. (5) as

~ _;
pG(t,U,U;W! 7])_ (ZW)Z\/mexp[

* - 1 m ~
<Vk>: jﬁka(<mk>+mk) \/ZO’k eXF{ - ZO_kZ}dmk:
(10)
where
op=((me—(m))?),
(M) = a1 (X) + axaly) + axa(2).
For large times it follows from Eq8) that
_ 2 D42 D1 5 Do
(e)=0, (n) 5 (u) by’ (v9) b,’ (11)

(un)=0,

Planck operator Le[p(t)]: dp/at=Lg[p(t)]p, dpg/at
=Lg[p(t)]pg. Performing integration by parts one obtains

d 4 P 2
aH(p’pG):_pr;l Di(_ln(ﬁ)] H dx <0,

‘9Xi Pe i
(15

where the notationX; ,X»,X3,X4) =(X,Y,Z,&) has been intro-
duced.

The aboveH theorem implies thatp(t,x,y,z,e) ap-
proachespg(t,x,y,z,e) for sufficiently larget, while the
relative entropy monotonically decreases. Then it follows
that the Gaussian distributiopg(t,X,y,z,¢) itself can be a
solution of the NFPE under the certain conditioApg /dt
=Lg[pg(t)Ipg instead ofdpg/dt=Lg[p(t) ]pg. This is in-
deed the case, when the initial distributipfOx,y,z,&) is
Gaussian: suppose one hag(0X,y,z,e)=8(X—Xg,Y
—Yo.2—20)\y[2nD4exp(~ye%2D,) with the colored
noisec$) being stationary.

Note that sincepg(t,X,Y,z,e) depends ormp(t,X,y,z,¢e),
its uniqueness is not ensured, unlike the case of the k$ual
theorem for linear Fokker-Planck dynamics. Instead, one
may expect bifurcation phenomena to occur as parameters
involved in Eq.(4) are varied. We proceed to examine the
occurrence of such phenomena with changes in the noise
strengthD, (k=1, ... ,4).

The effect of the external noide, (k=1,2,3) manifests
itself through(V,), which is determined by the varianog.

026210-3



MASATOSHI SHIINO AND KAZUMI YOSHIDA

The effective nonlinear coupling functiafV/y), in general,
becomes more smoothly shaped than the bare\gneas a
result of the transformatiof(i0).

When V, is a sigmoidal functionV, (x)=1 (x> 6,),
—1(x<—6,), X6 (|x| <8y, (Vi) takes the form of the
smoother sigmoidal function

(V)= 1+<r;k>)N 0k+<mk>}
k Oy
(M 9k_<mk>}
1 )N -
oy (Ot (m))?
i V276, ex;{— 207 )

7 , (16)

p( (Gk—<mk>)2)
—exp — kAT
whereN[x]= [¥(1/\27)exp(—Z/2)dz

In the case withV,(x)=sinx, one can explicitly write
down the averagéV,) as

20’k

(Vk)=ex;< — %(2) sinimy), 17
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0.25

FIG. 1. Plot of the largest Liapunov exponentg vs the noise
strengthD showing the occurrence of phase transitions in the sto-
chastic systemsl) with V,(x)=sinx; the lines are guides to the
eye. A positive value of\y, implies that the motion is chaotic.
Equations(6a)—(6¢) were numerically integrated in the case where
a11= 10, a12: 710, a13:O.1, 3.21: 10, a22:0.5, a23:0.1, a31
=-3.0, a3,=0.6, a33=0.93, D4,=0, &,=¢,=1.55, ¢;3=3¢,,
b;=b,=1, andbz=1. The ferromagnetic-paramagnetic transition
point D (not shown hergis D.~0.337.

plotted againsD in the case when the coupled systéin
with D=0 exhibits chaotic oscillations. We see thatlass
increased fronD =0 chaotic oscillations repeatedly undergo

which implies that the effect of noise can be viewed as simyansitions from chaos to the limit cycle and then to chaos,

ply reducing the original coupling strength by the factor
exp—ai2).

IIl. NONEQUILIBRIUM PHASE TRANSITIONS AND
CONTROL OF CHAOS BY NOISE

For simplicity we choos®/(x) =sinx in this paper. Solv-
ing Egs. (6a—(60) and (7) with (¢)=0 and(#n?)=D,/y,
together with Eqs(12) and(17), we can find the occurrence
of various types of bifurcation. We assuniig=D,=D4
(=D) andb;=b,=1 for simplicity in what follows. Note
that (x)=(y)=(z)=0 is always a solution, which is stable
for D larger than a certain critical valug.. Such a fixed

point attractor corresponds to a paramagnetic phase with t
highest symmetry in the ferromagnetic-paramagnetic type o,

thermodynamic phase transitiph3—17. ForD<D_, in ad-

including narrow periodic windows for entering a compara-
tively large D region of the limit cycle phase, which is fol-
lowed by fixed point type attractor phases including the para-
magnetic phase. As is expected from the above behavior of
the bifurcations, if the system is chosen so as to exhibit limit
cycle oscillations in the absence of noise, increagingan
bring about chaos in the system.

The appearance of chaos or limit cycle oscillations means
that the motion of the average of the Gaussian distribution
exhibits such oscillations, while the width of the distribution
remains constant. However, when we consider the case with
coupling noise, the appearance of oscillatory behavior of the

e location of the peaKaverage¢ and the width of the
aussian distribution. SettinD =0, we investigate th®,
dependence of the system. Figure 2 depicts the variation of

%stem will be accompanied by oscillatory motions of both

dition to nonzero fixed point solutions, dynamical attractorsy, o largest Lyapunov exponet, with change inD,, in the

such as the limit cycle and chaos may appear as a result of

stability switch whenD is varied. It is noted that, since

the system has inversion symmetry with respect to th

transformation  (x),(y),(2),(W?) ,(w7))— (—(x),—{y),
—(2),{w?),—(wn)), two solutions symmetric to each other
if different, turn out to coexist.

First we setD,=0 to observe the effect of changiriy
alone. In this case it will suffice to deal only with Eq6a)—
(6¢) with (&)=0 and

V= exp{ - %

since(w?)=D3/b, for large times. We show a typical ex-
ample in Fig. 1, where the largest Lyapunov expongptis

bs

A’ a’+

sin{my),

dase where limit cycle oscillations appear in the absence of
noise. We see the occurrence of bifurcations through peri-

%dic windows ad, is increased, from limit cycle to chaos

and back to limit cycle attractors and finally to a chaotic

' phase, which remains in existence no matter how large the

value ofD,. Indeed, such chaotic attractors for laiDg are
found to exhibit theD, dependence

(), (y).(2),(W?) (W)
1 1 1
-lo o 0 o .0 o ,O(l),O(\/D_4))

in the limit D,—o with the largest Lyapunov exponent
tending to\,,~0.024.
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015 —————t o e s about unusual behavior such that, even if the noise level is
] I infinitely large, such nontrivial attractors as chaos or limit
cycles may remain in existence.

One might be tempted to consider that, while a transition
from chaos to limit cycle with increasing noise level, which
can be viewed as the reduction of the degree of complexity
due to noise, is quite reasonable, a reverse transition from
limit cycle to chaos seems at first glance contradictory to the
expected reduction of the degree of complexity. The transi-
tion from limit cycle to chaos induced by noise in our models
] I is reminiscent of the phenomenon of noise-induced chaos

Y2 S | that was previously reported, using digital and analog simu-

) 5 10 15 20 25 30 lations, in the single Lorenz oscillator model. However, the
D, former, which occurs only in the thermodynamic limit, will
) ) differ from the latter in character. Our present results reveal

FIG. 2. Plot of the largest Liapunov exponenig vs the noise 4t nroplems of phase transitions of our model system can
strengthD, displaying the effect of changing the noise level in the be simply as well as nicely understood in terms of legitimate
coupling strength, which is observed to be capable of inducing,i rcations of the nonlinear dynamics with a few degrees of
phas_,e_transitions. Equatio(&a)_— (6c),_(7a), and(7_b) with the same freedom reduced from the dynamics with infinitely many
g‘ijz((')'t ia - 13; \;veLesguraglcilILy Lnie%raiezd ;nn;r;ezcoazeTv\\I/vhoere degrees of freedom. The analytical tractability of our model
differéntl attrzactolrs{cI(B)sed zli,ndlope; cirl:lgsoe;(ist. - may be attributed to the specific feature that nonlinearity

manifests itself only in the coupling terms of the original
dynamical equations and that it becomes possible to conduct
linear stochastic analyses of the Markov process in the ther-
odynamic limit.
We have also found that d# theorem with an appropri-
ately definedH functional that takes the form of the relative
entropy still holds for the NFPE capable of exhibiting bifur-
cations, and that it ensures stability of and convergence to
the Gaussian distributio(®) that is given as a special solu-
ﬁié)n to the NFPE. Theéd functional, which can be rewritten

0.1

We also find that just after the onset of chaosDat
~4.06 via a period doubling sequence a limit cycle circulat-
ing outside the chaotic trajectory manifests itself anew af"
D,~4.33 to keep coexisting all the way for increasibg
with the chaos or limit cycle attractor lying inside it. It is
worth noting that, unlike in the case of Fig. 1 with changing
D, any further increase dd, does not induce a transition to
the paramagnetic state witx)=(y)=(z)=0. This is be-
cause the presence of the coupling noise does not alter t
linear stability of the solution (&),(y),(z),(w?),(w»))

=(0,0,0P3/b3,0), as can easily be shown by a linear stabil-

ity analysis of Eqs(6a—(6c) and(7), with the paramagnetic H(p,ps)= f ,PInpdxdydz @+ ;In[detC(1)]
state remaining unstable for any value®j in the case of R

assumed values of the parametéfi. 2). +2In27+2, (18

however, differs from the usually known one, which takes

the form of a free energy or of its increment measured with
We have shown the occurrence of nonequilibrium phaséespect to the equilibrium stafd7,24,29. We have here

transitions involving the appearance or disappearance of ch@&ssumed, in rewriting the above equation, tHafs;),

otic attractors in nonlinearly coupled oscillatory systems sub={SiSj)p,=C(1);; (i.j=1, ... ,4). The nonstandard form of

jected to external noise. Such phase transitions or bifurcaeEq. (18) arises from the absence of the so-called detailed

tions in stochastic systems as found in the present work cabalance condition in the present system.

occur, in a strict sense, only in the thermodynamic limit. Details of the analysis including the behavior of the sys-

Noise added in the coupling strength has been found to brintem in the largeD, limit will be reported elsewhere.
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[1] C. W. Gardiner,Handbook of Stochastic MethodSpringer- E 52, 316(1995.
Verlag, Berlin, 1985 [6] N. G. Stocks, Phys. Rev. Le®4, 2310(2000.
[2] L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni, Rev. [7] J. Hertz, A. Krogh, and R. G. Palmemtroduction to the
Mod. Phys.70, 223(1998. Theory of Neural ComputatiofAddison-Wesley, Redwood
[3] R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. 14, 1453 City, CA, 1991.
(19812); C. Nicolis and G. Nicolis, Tellug3, 225(1981). [8] M. Shiino and T. Fukai, Phys. Rev. 4B, 867 (1993.
[4] M. E. Inchiosa and A. R. Bulsara, Phys. Rev.532, 327 [9] R. Kuhn and S. Bos, J. Phys. 26, 831 (1993.
(1995. [10] C. M. Marcus, F. W. Waugh, and R. M. Westervelt, Phys. Rev.

[5] M. Morillo, J. Gomez-Ordonez, and J. M. Casado, Phys. Rev. A 41, 3355(1990.

026210-5



MASATOSHI SHIINO AND KAZUMI YOSHIDA

[11] A. Arenas and C. J. Perez Vicente, Europhys. L2, 79
(19949.

[12] M. Yoshioka and M. Shiino, Phys. Rev. @&, 4732(2000.

[13] M. Shiino, Phys. Lett111A, 396(1985.

[14] H. Sakaguchi, Prog. Theor. Phy#9, 39 (1988.

[15] R. C. Desai and R. Zwanziig, J. Stat. Ph¢8, 1 (1978.

[16] D. A. Dawson, J. Stat. Phy81, 29 (1983.

[17] M. Shiino, Phys. Lett112A, 302 (1985; Phys. Rev. A36,
2393(1987).

[18] A. N. Drozdov and M. Morillo, Phys. Rev. B4, 3304(1996.

PHYSICAL REVIEW E 63 026210

[19] K. Matsumoto and I. Tsuda, J. Stat. Phgg, 87 (1983.

[20] I. I. Fedchenia, R. Mannella, P. Y. E. McClinstock, N. D.
Stein, and N. G. Stocks, Phys. Rev.48, 1769(1992.

[21] T. Shibata, T. Chawanya, and K. Kaneko, Phys. Rev. 18t.
4424(1999.

[22] S. V. Ershov and A. B. Potapov, Physica8B, 523 (1995.

[23] M. Shiino (unpublishegt K. Yoshida(unpublished

[24] M. Shiino, J. Phys. Soc. Jp67, 3658(1998; (unpublishegl

[25] M. Shiino, J. Math. Phys(to be publisheg

026210-6



