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Chaos-nonchaos phase transitions induced by external noise in ensembles
of nonlinearly coupled oscillators
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Nonlinear dynamical behaviors of ensembles of nonlinearly coupled oscillators subjected to external noise
are studied on the basis of nonlinear Fokker-Planck equations. The effects of two kinds of noise, the Langevin
noise and the noise introduced in the coupling strength, are investigated, and phase transitions involving
chaos-nonchaos bifurcations are found to occur as the noise level is changed. AnH theorem is proposed for the
nonlinear Fokker-Planck equation to ensure stability of the Gaussian type solution that is approached for large
times.
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I. INTRODUCTION

The behaviors of nonlinear dynamical systems subjec
to external noise has attracted much attention from resea
ers in many areas of science@1,2#. While the effects of noise
are usually considered to obscure the fine structure of int
sic physical properties of a system, or to deteriorate the
gree of coherence or order, the phenomena of stocha
resonance@2,3# are known to reveal a favorable aspect of t
action of noise in improving the performance of the syste
as is shown by the fact that noise can enhance the resp
of a bistable system to a weak time-periodic signal un
certain conditions. The degree of stochastic resonance
be made pronounced by introducing appropriate coupli
among nonlinear elements to make a coupled system@4,5#
~see also@6#!, whose behaviors have also been of great
terest in recent years from the viewpoint of developing
neural network theory@7–12#.

Unlike the case of a system of a single or a small num
of element~s! or oscillator~s!, a coupled system composed
a great number of elements becomes robust to a certain
tent against the influence of noise with respect to the pre
vation of the intrinsic natures of the constituents@13,14#:
whereas a damped oscillator with a symmetric bistable
tential that is subjected to external white noise exhibits
godicity without showing any bifurcations, a system ofN
coupled damped oscillators with mean-field couplings c
undergo a ferromagnetic-paramagnetic type phase trans
in the thermodynamic limitN→`, as the noise level is var
ied @15–17#, giving rise to the occurrence of spontaneo
symmetry breaking.

The occurrence of such a phase transition was studie
the basis of the analysis of a nonlinear Fokker-Planck eq
tion ~NFPE! @15–18# that describes the empirical probabili
distribution for a system of globally coupled Langevin equ
tions under the thermodynamic limit. The NFPE emerges
a direct consequence of applying the law of large number
accordance with the scheme of mean-field coupling. Un
the linear Fokker-Planck equation, the NFPE, which is a k
of nonlinear master equation, is no longer expected to exh
ergodicity and hence may give rise to the occurrence of
1063-651X/2001/63~2!/026210~6!/$15.00 63 0262
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furcations of solutions@5,13–18#. The NFPE with a symmet-
ric bistable potential and a diffusive coupling taken into a
count indeed exhibits a pitchfork bifurcation representing
ferromagnetic-paramagnetic type phase transition, while
H theorem has been shown to still hold to ensure glo
stability of the system@17#. In this case the coupled syste
satisfies the so-called detailed balance condition leading
the existence of an energy function.

The problem of studying the case without the detai
balance condition then arises, to see what will happen
such a system as the noise level is changed. The effec
noise on synchronization phenomena in coupled limit cy
oscillators @13,14# as well as in oscillator neural network
@11,12# have been studied, using the NFPE, to confirm t
order-disorder type phase transitions can occur. It will be
particular interest to observe behaviors of a system
coupled chaotic oscillators, since the appearance or di
pearance of chaos with changes of noise level may be vie
as a way of controlling chaos with noise@19,20#. Recently,
the effects of noise on a coupled map lattice with mean-fi
couplings have been studied by Shibata, Chawanya,
Kaneko @21# using computer simulations on the nonline
Perron-Frobenius equation@22#. They have shown that nois
reduces the degree of complexity in terms of the Lyapun
dimension of the system. The result that too much no
added to the system leads to the creation of a fixed poin
the space of order parameters is consistent with the app
ance of the disordered phase observed in the order-diso
type phase transition of coupled limit cycle oscillator sy
tems@12#. Dealing with the case of a coupled chaotic syste
of time-continuous oscillators will, however, require co
ducting extensive numerical work based on time-consum
computer simulations.

The aim of this paper is to study the effect of noise
globally coupled systems exhibiting time-continuous chao
oscillations as rigorously as possible on the basis of ana
cally solvable models. To this end we consider nonlinea
coupled oscillator systems taking the form of analog neu
network equations that exhibit chaotic or limit cycle oscill
tions in the absence of external noise@23#. We introduce
noise into such systems in two ways: by applying the Lan
vin noise as an external force in the standard way, and
©2001 The American Physical Society10-1
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adding colored noise in the coupling strength. Studies of
effects of noise introduced in the coupling strength from
viewpoint of phase transitions have been quite few. We
vestigate stochastic behaviors of the system by employ
the method of the nonlinear Fokker-Planck equation. T
NFPE corresponding to such systems yields a solution
resenting oscillatory motions of the probability distributio
whose dynamical behavior may depend on the magnitud
the diffusion constants. We will show that anH theorem also
holds for the NFPE of the present system to ensure stab
of the Gaussian distribution that is given as its special so
tion.

II. MODEL AND NONLINEAR FOKKER-PLANCK
EQUATION APPROACH

We begin by defining a system ofN elements coupled via
nonlinear global interactions and subjected to external no
whose dynamics is described by a set of Langevin equati

ẋ~ i !52b1x~ i !1(
j 51

N

J1
~ i j !V1~a11x

~ j !1a12y
~ j !1a13z

~ j !!

1 f 1
~ i !~ t !,

ẏ~ i !52b2y~ i !1(
j 51

N

J2
~ i j !V2~a21x

~ j !1a22y
~ j !1a23z

~ j !!

1 f 2
~ i !~ t !, ~1!

ż~ i !52b3z~ i !1(
j 51

N

J3
~ i j !V3~a31x

~ j !1a32y
~ j !1a33z

~ j !!

1 f 3
~ i !~ t !, i 51, . . . ,N,

with ^ f k
( i )(t) f l

( j )(t8)&52Dkd(t2t8)d i j dkl (Dk.0) and
b1 ,b2 ,b3.0, whereakl andbk are constants andVk denote
appropriate nonlinear functions specifying the nonlinear c
plings. We assumeVk to be bounded functions such a
tanhb(•), sin(•), and so on. The mean-field couplin
strengthsJi j may be assumed to be given by

Jk
~ i j !5

1

N
~«k1«k

~ i !!, k51, . . . ,3, ~2!

where«k are constants, and«k
( i ) represents appropriately de

fined colored noise in the coupling strength. For simplic
we take«1

( i )5«2
( i )50, and assume«3

( i ) to obey the Ornstein-
Uhlenbeck process:

d

dt
«3

~ i !52g«3
~ i !1 f «

~ i !~ t !,

~3!
^ f «

~ i !~ t ! f «
~ j !~ t8!&52D4d~ t2t8! ~g.0, D4>0!.

Choosing such a sigmoidal function as tanhb(•) with ana-
log gainb for V(•), we can view Eq.~1! as a network mode
equation of analog neurons, which have been extensi
studied in the case without noise@8–10#. In the absence o
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noise, an appropriate parameter setting forakl in Eq. ~1!
yields limit cycle or chaotic oscillations even for the ca
with finite N @23#, for which the introduction of any smal
amount of external noise (Dk.0, k51,2,3) would, however,
bring ergodicity into the stochastic system to prevent os
latory motions of averaged physical quantities. We are c
cerned with investigating the behaviors of the system driv
by external noise in the thermodynamic limitN→`. To this
end it will be appropriate to transform the above set of eq
tion into the nonlinear Fokker-Planck equation describing
time evolution of the empirical probability distribution:

]p~ t,x,y,z,«!

]t
52

]

]x
@~2b1x1«1^V1&!p#

2
]

]y
@~2b2y1«2^V2&!p#

2
]

]z
@~2b3z1~«31«!^V3&!p#

2
]

]«
@2g«p#1S D1

]2

]x2 1D2

]2

]y2

1D3

]2

]z2 1D4

]2

]«2D p

[LF@p~ t !#p ~4!

with

^Vk&5E V~ak1x1ak2y1ak3z!p~ t,x,y,z,«!dx dy dz d«.

~5!

We then straightforwardly obtain the order parameter eq
tion of the meanŝx&, etc.:

d

dt
^x&52b1^x&1«1^V1&, ~6a!

d

dt
^y&52b2^y&1«2^V2&, ~6b!

d

dt
^z&52b3^z&1~«31^«&!^V3&, ~6c!

d

dt
^«&52g^«&. ~6d!

Note that the NFPE has the characteristic feature that
can formally separate it into the motions of the mea
^x&, ^y&, ^z&, and^«& and the second moments of the pro
ability distribution around the mean, although the former
in reality affected by the latter via the term̂Vk& that arises
from the couplings. Indeed, puttingu5x2^x&, v5y2^y&,
w5z2^z&, h5«2^«&, one obtains the moment equation

d

dt
^w2&522b3^w

2&12^wh&^V3&12D3 , ~7a!
0-2
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d

dt
^wh&52~b31g!^wh&1^h2&^V3&, ~7b!

together with

d

dt
^u2&522b1^u

2&12D1 ,
d

dt
^v2&522b2~v2!12D2 ,

d

dt
^uh&52~b11g!^uh&,

d

dt
^vh&52~b21g!^vh&,

d

dt
^uv&52~b11b2!^uv&,

~8!
d

dt
^vw&52~b21b3!^vw&1^vh&^V3&,

d

dt
^wu&52~b11b3!^wu&1^uh&^V3&,

d

dt
^h2&522g^h2&12D4 ,

where ^•& represents the average with respect to the co
sponding probability distributionp̃(t,u,v,w,h). Equation
~8! takes a closed form without the need to know high
moments, sincep̃(t,u,v,w,h) turns out to obey a linea
Fokker-Planck equation, given that^Vk& is known as a func-
tion of t. It then follows that a special solution to the line
Fokker-Planck equation can be given by a Gaussian distr
tion of the form

p̃G~ t,u,v,w,h!5
1

~2p!2AdetC~ t !
exp$2 1

2 „C~ t !21sW,sW…%,

~9!

where sW5(u,v,w,h) and the matrixC(t) has the compo-
nentsC(t) i j 5^sisj& ( i , j 51, . . . ,4) that are the solution to
the moment equations~7! and~8! with si denoting the com-
ponent ofsW.

When p̃(t,u,v,w,h)5 p̃G(t,u,v,w,h) holds, by defining
mk5ak1x1ak2y1ak3z, one can rewritêVk& in Eq. ~5! as

^Vk&5E
2`

`

Vk~^mk&1m̃k!
1

A2psk

expF2
m̃k

2

2sk
2Gdm̃k ,

~10!

where

sk
25^~mk2^mk&!2&,

^mk&5ak1^x&1ak2^y&1ak3^z&.

For large times it follows from Eq.~8! that

^«&50, ^h&25
D4

g
, ^u2&5

D1

b1
, ^v2&5

D2

b2
, ~11!

^uh&50,
02621
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^vh&50, ^uv&50, ^vw&50, ^wu&50.

We see that Eqs.~6a!–~6c! and ~7! with ^«&50 and
^h2&5D4 /g exhaustively describe the dynamical behavio
of the coupled system for large times, for which

sk
25ak1

2
D1

b1
1ak2

2
D2

b2
1ak3

2^w2&. ~12!

The Gaussian distributionp̃G(t,u,v,w,h) assumed in the
above argument turns out to be approached with time elap
from any initial condition for p(t,x,y,z,«). This can be
more directly confirmed by the followingH theorem for the
NFPE.

H theorem. Let p(t,x,y,z,«) be any solution to the NFPE
~4!. Suppose that the Gaussian distributionpG(t,x,y,z,«)
[ p̃G(t,x2^x&,y2^y&,z2^z&,«2^«&) in Eq. ~9! is defined
such that the means^x&, etc., and covariances^u2&, etc., are
given as an arbitrary solution to the moment equations~6!,
~7!, and~8! with the averagêVk& taken with respect to the
p(t,x,y,z,«) @Eq. ~5!#. Then the following inequalities hold

H~p,pG![E
R4

p lnS p

pG
Ddx dy dz d«>0, ~13!

d

dt
H~p,pG!<0. ~14!

Proof. The first inequality follows from the entropy in
equalityx21> ln x with x5pG /p. To prove the second in
equality, note thatp(t,x,y,z,«) and pG(t,x,y,z,«) satisfy
the time evolution equation with the same Fokke
Planck operator LF@p(t)#: ]p/]t5LF@p(t)#p, ]pG /]t
5LF@p(t)#pG . Performing integration by parts one obtain

d

dt
H~p,pG!52E

R4
p(

i 51

4

Di H ]

]xi
lnS p

pG
D J 2

)
i

dxi<0,

~15!

where the notation (x1 ,x2 ,x3 ,x4)5(x,y,z,«) has been intro-
duced.

The above H theorem implies thatp(t,x,y,z,«) ap-
proachespG(t,x,y,z,«) for sufficiently large t, while the
relative entropy monotonically decreases. Then it follo
that the Gaussian distributionpG(t,x,y,z,«) itself can be a
solution of the NFPE under the certain conditions:]pG /]t
5LF@pG(t)#pG instead of]pG/]t5LF@p(t)#pG. This is in-
deed the case, when the initial distributionp(0,x,y,z,«) is
Gaussian: suppose one hasp(0,x,y,z,«)5d(x2x0 , y
2y0 , z2z0)Ag/2pD4 exp(2g«2/2D4) with the colored
noise«3

( i ) being stationary.
Note that sincepG(t,x,y,z,«) depends onp(t,x,y,z,«),

its uniqueness is not ensured, unlike the case of the usuH
theorem for linear Fokker-Planck dynamics. Instead, o
may expect bifurcation phenomena to occur as parame
involved in Eq.~4! are varied. We proceed to examine th
occurrence of such phenomena with changes in the n
strengthDk (k51, . . . ,4).

The effect of the external noiseDk (k51,2,3) manifests
itself through^Vk&, which is determined by the variancesk

2.
0-3
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The effective nonlinear coupling function̂Vk&, in general,
becomes more smoothly shaped than the bare oneVk , as a
result of the transformation~10!.

When Vk is a sigmoidal function,Vk(x)51 (x.uk),
21 (x,2uk), x/uk (uxu,uk), ^Vk& takes the form of the
smoother sigmoidal function

^Vk&5S 11
^mk&
uk

DNFuk1^mk&
sk

G
1S 211

^mk&
uk

DNFuk2^mk&
sk

G
1

sk

A2puk
FexpS 2

~uk1^mk&!2

2sk
2 D

2expS 2
~uk2^mk&!2

2sk
2 D G , ~16!

whereN@x#5*0
x(1/A2p)exp(2z2/2)dz.

In the case withVk(x)5sinx, one can explicitly write
down the averagêVk& as

^Vk&5expS 2
sk

2

2 D sin̂ mk&, ~17!

which implies that the effect of noise can be viewed as s
ply reducing the original coupling strength«k by the factor
exp(2sk

2/2).

III. NONEQUILIBRIUM PHASE TRANSITIONS AND
CONTROL OF CHAOS BY NOISE

For simplicity we chooseVk(x)5sinx in this paper. Solv-
ing Eqs. ~6a!–~6c! and ~7! with ^«&50 and ^h2&5D4 /g,
together with Eqs.~12! and~17!, we can find the occurrenc
of various types of bifurcation. We assumeD15D25D3
(5D) and b15b251 for simplicity in what follows. Note
that ^x&5^y&5^z&50 is always a solution, which is stabl
for D larger than a certain critical valueDc . Such a fixed
point attractor corresponds to a paramagnetic phase with
highest symmetry in the ferromagnetic-paramagnetic type
thermodynamic phase transition@13–17#. ForD,Dc , in ad-
dition to nonzero fixed point solutions, dynamical attracto
such as the limit cycle and chaos may appear as a result
stability switch whenD is varied. It is noted that, sinc
the system has inversion symmetry with respect to
transformation (̂x&,^y&,^z&,^w2&,^wh&)→(2^x&,2^y&,
2^z&,^w2&,2^wh&), two solutions symmetric to each othe
if different, turn out to coexist.

First we setD450 to observe the effect of changingD
alone. In this case it will suffice to deal only with Eqs.~6a!–
~6c! with ^«&50 and

^Vk&5expF2
D

2 S ak1
21ak2

21
ak3

2

b3
D Gsin̂ mk&,

since^w2&5D3 /b3 for large times. We show a typical ex
ample in Fig. 1, where the largest Lyapunov exponentlM is
02621
-

he
of

s
f a

e

plotted againstD in the case when the coupled system~1!
with D50 exhibits chaotic oscillations. We see that asD is
increased fromD50 chaotic oscillations repeatedly underg
transitions from chaos to the limit cycle and then to cha
including narrow periodic windows for entering a compar
tively largeD region of the limit cycle phase, which is fol
lowed by fixed point type attractor phases including the pa
magnetic phase. As is expected from the above behavio
the bifurcations, if the system is chosen so as to exhibit li
cycle oscillations in the absence of noise, increasingD can
bring about chaos in the system.

The appearance of chaos or limit cycle oscillations me
that the motion of the average of the Gaussian distribut
exhibits such oscillations, while the width of the distributio
remains constant. However, when we consider the case
coupling noise, the appearance of oscillatory behavior of
system will be accompanied by oscillatory motions of bo
the location of the peak~average! and the width of the
Gaussian distribution. SettingD50, we investigate theD4
dependence of the system. Figure 2 depicts the variatio
the largest Lyapunov exponentlM with change inD4 in the
case where limit cycle oscillations appear in the absence
noise. We see the occurrence of bifurcations through p
odic windows asD4 is increased, from limit cycle to chao
and back to limit cycle attractors and finally to a chao
phase, which remains in existence no matter how large
value ofD4 . Indeed, such chaotic attractors for largeD4 are
found to exhibit theD4 dependence

~^x&,^y&,^z&,^w2&,^wh&!

5XOS 1

AD4
D ,OS 1

AD4
D ,OS 1

AD4
D ,O~1!,O~AD4!C

in the limit D4→` with the largest Lyapunov exponen
tending tolM'0.024.

FIG. 1. Plot of the largest Liapunov exponentslM vs the noise
strengthD showing the occurrence of phase transitions in the s
chastic systems~1! with Vk(x)5sinx; the lines are guides to the
eye. A positive value oflM implies that the motion is chaotic
Equations~6a!–~6c! were numerically integrated in the case whe
a1151.0, a12521.0, a1350.1, a2151.0, a2250.5, a2350.1, a31

523.0, a3250.6, a3350.93, D450, «15«251.55, «353«1 ,
b15b251, andb351. The ferromagnetic-paramagnetic transitio
point Dc ~not shown here! is Dc'0.337.
0-4
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We also find that just after the onset of chaos atD4
'4.06 via a period doubling sequence a limit cycle circul
ing outside the chaotic trajectory manifests itself anew
D4'4.33 to keep coexisting all the way for increasingD4
with the chaos or limit cycle attractor lying inside it. It i
worth noting that, unlike in the case of Fig. 1 with changi
D, any further increase ofD4 does not induce a transition t
the paramagnetic state witĥx&5^y&5^z&50. This is be-
cause the presence of the coupling noise does not alte
linear stability of the solution (̂x&,^y&,^z&,^w2&,^wh&)
5(0,0,0,D3 /b3,0), as can easily be shown by a linear stab
ity analysis of Eqs.~6a!–~6c! and~7!, with the paramagnetic
state remaining unstable for any value ofD4 in the case of
assumed values of the parameters~Fig. 2!.

IV. CONCLUDING REMARKS

We have shown the occurrence of nonequilibrium ph
transitions involving the appearance or disappearance of
otic attractors in nonlinearly coupled oscillatory systems s
jected to external noise. Such phase transitions or bifu
tions in stochastic systems as found in the present work
occur, in a strict sense, only in the thermodynamic lim
Noise added in the coupling strength has been found to b

FIG. 2. Plot of the largest Liapunov exponentslM vs the noise
strengthD4 displaying the effect of changing the noise level in t
coupling strength, which is observed to be capable of induc
phase transitions. Equations~6a!–~6c!, ~7a!, and~7b! with the same
ai j ( i , j 51, . . . ,3) were numerically integrated in the case wher
D50, «15«251.7, «353«1 , b15b251, b352, andg50.2. Two
different attractors~closed and open circles! coexist.
ev

ev

02621
-
t

he

-

e
a-
-

a-
an
.
g

about unusual behavior such that, even if the noise leve
infinitely large, such nontrivial attractors as chaos or lim
cycles may remain in existence.

One might be tempted to consider that, while a transit
from chaos to limit cycle with increasing noise level, whic
can be viewed as the reduction of the degree of comple
due to noise, is quite reasonable, a reverse transition f
limit cycle to chaos seems at first glance contradictory to
expected reduction of the degree of complexity. The tran
tion from limit cycle to chaos induced by noise in our mode
is reminiscent of the phenomenon of noise-induced ch
that was previously reported, using digital and analog sim
lations, in the single Lorenz oscillator model. However, t
former, which occurs only in the thermodynamic limit, wi
differ from the latter in character. Our present results rev
that problems of phase transitions of our model system
be simply as well as nicely understood in terms of legitim
bifurcations of the nonlinear dynamics with a few degrees
freedom reduced from the dynamics with infinitely ma
degrees of freedom. The analytical tractability of our mod
may be attributed to the specific feature that nonlinea
manifests itself only in the coupling terms of the origin
dynamical equations and that it becomes possible to con
linear stochastic analyses of the Markov process in the t
modynamic limit.

We have also found that anH theorem with an appropri-
ately definedH functional that takes the form of the relativ
entropy still holds for the NFPE capable of exhibiting bifu
cations, and that it ensures stability of and convergence
the Gaussian distribution~9! that is given as a special solu
tion to the NFPE. TheH functional, which can be rewritten
as

H~p,pG!5E
R4

p ln pdx dy dz d«1 1
2 ln@detC~ t !#

12 ln 2p12, ~18!

however, differs from the usually known one, which tak
the form of a free energy or of its increment measured w
respect to the equilibrium state@17,24,25#. We have here
assumed, in rewriting the above equation, that^sisj&p
5^sisj&PG

[C(t) i j ( i , j 51, ... ,4). The nonstandard form o
Eq. ~18! arises from the absence of the so-called deta
balance condition in the present system.

Details of the analysis including the behavior of the sy
tem in the largeD4 limit will be reported elsewhere.
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